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Foreword

This draft report presents modeling protocols that provide the water community with basic
principles and guidelines for model development and use. This effort was spawned by
discussion during the Bay-Delta Modeling Forum’s (Forum) 1996 Annual Meeting &
Workshop breakout session entitled "Should or Can Modeling Protocols/Conventions be
Standardized?" At that session, the participants hypothesized that water stakeholders and
decision-makers often lose confidence in models because of inconsistencies in the way
models are developed and used. After much discussion, the participants concluded that
uniform application of modeling protocols should result in better models and modeling
studies, and, thus, increase the confidence of stakeholders and decision-makers who use
model results. Consequently, the breakout participants unanimously agreed that modeling
protocols can and should be standardized, and that the Forum should take the lead in this
effort.

In March of 1997, the Forum formed an Ad hoc Modeling Protocols Committee to

(1) develop modeling protocols that can become standards for model development and use
and (2) prepare a written report of findings for Forum acceptance. As part of this effort, the
Modeling Protocols Committee developed the following mission statement:

The mission of the Modeling Protocols Committee is to develop modeling
principles and guidelines (protocols) that provide guidance to water
stakeholders and decision-makers, and their technical staff as models are
developed and used to solve California’s water and environmental problems.

The Ad hoc Modeling Protocols Committee (listed below) expects to complete this report by
May 1998. If the Forum “accepts” the final report, the committee will assist Forum members
and other interested parties in implementing the modeling protocol recommendations
contained in this report. In addition, the committee will develop additional modeling
protocols, if necessary. As specified in Section 9.05 of the Forum bylaws, it should be noted
that this report does not necessarily represent the views of the governing bodies of the
represented organizations or individual members of the Forum.

Ad hoc-Modeling Protocols Committee

Richard Satkowski (SWRCB)-Chair *
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1. Introduction

Water stakeholders and decision-makers use models as a tool to help solve California’s water
and environmental problems. Unfortunately, stakeholders and decision-makers, and even
their technical staff, often lose confidence in models because of (1) an inadequate
understanding about modeling and (2) inconsistencies in the way models are developed and
used. Confidence in model predictions and a good understanding of modeling is essential for
stakeholders and decision-makers responsible for setting water quality standards, flow
requirements and other regulations. To address this problem, the Bay-Delta Modeling Forum
(Forum) has developed modeling protocols, which are basic principles and guidelines for
model development and use. Model developers, users of modeling services, and water
stakeholders and decision-makers wishing to understand modeling and its consequences
should use modeling protocols. '

The objective of these modeling protocols are to provide guidance to water stakeholders and
decision-makers, and their technical staff as models are developed and used to solve
California’s water and environmental problems. The Forum believes that acceptance and
implementation of modeling protocols by California’s water community will result in better
models and modeling studies by doing the following:

e Improving the construction of models;

e Providing better documentation of models and modeling studies;

e Providing easier public access to models and modeling studies;

e Making models and modeling studies more easily understood and more amendable to
examination; and

e Increasing stakeholder, decision-maker, and technical staff confidence in models and
modeling studies.

A computer model consists of two basic parts: the computer code or software and the input
data set. Computer models can be as simple as a mass balance equation, which can be
performed on a calculator, to multiple differential equations that require high-speed
computers. According to the Forum bylaws, modeling includes, but is not limited to, the
following water-related topics (BDMF, 1997):

e Data gathering, storage and access e Hydrology, hydraulics, and irrigation
e Economics e System operations and real-time
e Fisheries, aquatic biology, and - management
habitat health e Water quality
¢ Groundwater e Water resources planning

e Hydrodynamics

This report explains in basic terms why models are important, how modeling efforts are
reviewed, and how models are developed and used. In addition, it describes various

modeling protocols that provide a consistent framework to develop, apply, and document a
computer model. ‘
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1. Purposes of Modeling

Solving California’s Water Problems

Computer models do not resolve conflicts: people do. However, computer modeling can
assist in that role by doing the following (Lund and Palmer, 1998):

Furthering understanding of the problem.
Defining solution objectives.
Developing promising alternatives.
Evaluating alternatives.

Providing confidence in solutions.
Providing a forum for negotiations.

The purpose of a model is to reproduce consistently the observable phenomena that are of
significance for a particular problem. For example, the purpose of a salinity water quality
model is to reproduce in time and space the distribution of salinity due to the effects of flows,
diversions, tides, etc. Modeling can be used to support real-time decision-making or evaluate
a physical or biological system under historical, present and future conditions.

California resources planning is increasingly dependent on analytical methods and tools
(models) that can provide practical answers for immediate problems and significant direction
for long-range plans (BDMF, 1995). Models are essential tools for analysis of issues arising
in water rights and development of new projects. These models play an important role in
developing environmental impact analyses of projects under the California Environmental
Quality Act (CEQA), and the federal National Environmental Policy Act (NEPA), such as -
the CALFED Bay-Delta Process, Central Valley Project Improvement Act (CVPIA), Interim
South Delta Program, Contra Costa Water District’s Los Vaqueros Project, the Delta
Wetlands Project, and other projects.
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Historical Solutions (Under Development)

Introduction
Water Supply Planning - the California Water Plan

Bulletin 27 Model
USCE Physical Model

Water Supply Planning - State Water Project

Seven-Reach Model - Salt Routing Model and Carriage Water
DAYFLOW - Data Compilation and Analysis - QWEST

Delta Facilities Planning and the Peripheral Canal

PCSTAGE - Evaluating Consequences of Project Staging
FLOSALT - Delta Agricultural Drainage Assessments

San Francisco Bay-Delta Water Quality Control Plan

Link-Node Models
TVSALT - Extension of the Link-Node Models
Striped Bass Model

San Luis Drain
Fischer Delta Mode] and its derivatives
Water Operations Models

State Water Project - DWRSIM
Central Valley Project - PROSIM
Los Vaqueros Project

Bay-Delta Water Quality Control Plan

Kimmerer-Monismith Equation
G-Model

Long Fin Smelt Model

Stary Flounder Model

Crangon Model

Salmon Survival Model
DELCORN

Year Type Models

Closing Notes
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3. Stakeholder and Public Review of Modeling Efforts

General Public Participation

The planning process, or as it is sometimes called "decision-making," are the actions that
lead to selection of a recommended plan. Planning should include an early and open process,
termed “scoping,” to identify both the likely significant issues to be addressed and the range
of those issues. Scoping should be used throughout planning to ensure that all significant
factors are addressed. Scoping may be used to narrow the number of plans under
consideration so that meaningful and efficient analysis and choice among alternative plans
can occur. Scoping should include consideration of all water problems and opportunities,
including instream flow problems and conjunctive use of surface and ground water.
Appropriate consideration should be given to existing water rights in scoping the planning
effort.

Proper planning requires adequate review and consultation with interested and affected
stakeholders, agencies, organizations, and individuals. These groups and individuals should
be provided opportunities to participate throughout the planning process. Efforts to secure
public participation should be pursued through public workshop, meetings, and technical
advisory and citizens committees. (U.S. Water Resource Council, 1983)

Much of the failure of water projects is due to the lack of stakeholder and decision-maker
communication as well as public participation in the water planning process. Failures in the
process are usually due to faulty assumptions, faulty predictions of likely behavior of
affected parties, and faulty assumptions of affected party perceptions. To overcome these
failures, the planning process must be performed with as much dialog, input and agreement
(consensus) as possible.

Shared Vision Modeling

In the technical and political arenas of California water, it is important that models enjoy a
wide base of support from stakeholders and decision-makers, and their technical staff.
Shared vision modeling is the common development of a model by a group of stakeholders
and/or decision-makers. The fundamental concept is that those that will be impacted by
water resource modeling should be provided the opportunity to participate in model design,
development, evaluation, and enhancement. A goal of this process is to provide all interested
parties with a tool increase their understanding of the problem and possible solutions. (Lund
and Palmer, 1998). This approach is really an extension of classical engineering planning to
more pluralistic decision-making circumstances (Werick and Whipple, 1994). The model is
typically developed by a single, often neutral, entity with very close coordination by
technical representatives from each stakeholder or stakeholder group. The model is then
approved by the participants and can be used separately by each group, with a fixed model
version and documentation (Lund and Palmer, 1993).

Shared vision modeling is intended to take the mostly technical decisions out from the
political spotlight, and remove as many technical questions disagreements as possible from
the conflict. If participants can arrive at agreement on what is contained in the model, then
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later efforts can focus on interpretation of the results, rather than arguments about model
content. The process of developing this model is usually seen as a prelude to the developing
and evaluating alternatives and meaningful negations among stakeholders. In addition, this

approach helps to create a technically based forum where the parties can negotiate (Lund and
Palmer, 1998).

Shared vision modeling, like other consensus building processes, requires that strong
motivation exists among the stakeholders to develop a consensus. Arriving at a consensus
about a model is not easy. Model development will progress much more slowly than if
performed by single group (Lund and Palmer, 1998). However, if one considers the
modeling and negotiation steps as one extended process, shared vision modeling usually
saves time in the long run.

Peer-Review

The Bay-Delta Modeling Forum has developed a peer review process for peer reviewing

computer models process (BDMF, 1996). Peer review is a method for reviewing models ina

timely, open, fair, and helpful manner. Peer review serves two principle clients: model
developers and model users by (1) providing constructive feedback to model developers and
(2) serving to further the models’ acceptance and understanding by the user community,
including stakeholders and decision-makers.

These peer reviews are not intended to be “stamps-of-approval” for particular models or to
disapprove of models. Instead, it is intended to inform stakeholders and decision-makers of
(1) whether or not a given model is a suitable tool, and (2) the temporal, geographic, or other
limits on the use of the model. The Forum’s model peer review steps are as follows:

1. Select Models 6. Conduct Initial Review

2. Select Reviewers _ 7. Test Models

3. Obtain Funding 8. Prepare Draft Report

4. Assemble Model, Docu- 9. Conduct Review Workshops
mentation, and Data 10. Prepare Final Report

5. Scope the Review

For more information on the Forum’s peer review process, access the Forum’s webpage at
www. sfei.org/modelingforum/.

External Review

California has enacted a “peer review” requirement for technical analysis performed by the
California Environmental Protection Agency (Cal EPA). This law, Senate Bill 1320 (Sher),
requires all organizations within the Cal EPA, such as the State Water Resources Control
Board, to conduct an external scientific peer review of the scientific basis for any rule and
prescribe procedures for conducting that scientific peer review (California Senate, 1997).

Under this law, the organizations within the Cal EPA can enter into an agreement with one or
more of the following:
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National Academy of Sciences;

University of California;

California State University;

Any similar institution of higher learning; or

A scientist or group of scientists of comparable stature and qualifications that is
recommended by the President of the University of California.

Given the diverse and highly technical composition of the Bay-Delta Modeling Forum, it is
likely that the Forum would qualify under the last category above. If the state organization
disagrees with any aspect of the external scientific peer review, it must (1) explain why it
disagrees in the adoption of the final rule, and (2) include this information as part of the
rulemaking record. Senate Bill 1320 can be found on the Internet at: www.leginfo.ca.gov.

*
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4. Model Development

"Different types of models are appropriate for solving different kinds
of problems; there is no universal model for solving all manner of
problems; comprehensiveness and complexity in a simulation are no
longer equated with accuracy; and there is a healthy mood of critical
questioning of the validity and credibility of water quality models."
M.B. Beck (1985)

"All mathematical models are based on a set of simplifying
assumptions, that affect their use for certain problems. ... To avoid
applying an otherwise valid model to an inappropriate field situation,
knowledge of all of the assumptions that form the basis of the model
and consideration of their applicability to the site and problem under
evaluations is very important." ASTM (1995a)

Computer models represent a systematic organization of our knowledge of a system
developed for some planning, engineering, or scientific purpose. This chapter is divided into
two sections. The first section discusses how different forms of knowledge are represented
in computer models. The second section presents a relatively accepted approach for
computer model development that (1) emphasizes the use of a model for problem-solving
and (2) informs modelers and model users of general model strengths and limitations.

Knowledge Basis for Model Development

Models represent existing or hypothesized knowledge of how a system works. There are two
major origins of this knowledge, causal (based on fundamentals of physics, chemistry, etc.)
and empirical (based more directly on field or laboratory observations). These two bases for
modeling are discussed frequently for water resource and environmental management models
(Beck 1983a, 1985; Klemes 1982; Scavia and Chapra 1977). Since our knowledge of these
systems is imperfect, probability is sometimes used in modeling to represent uncertainty.
Also, models are often discussed as being vital to adaptive management (Holling 1978),
where our knowledge of the system evolves with our management of it.

Mechanistic Models

Often called causally based or physically based models, mechanistic models rely on the
fundamental rules of logic and laws of physics, chemistry, etc. Some examples of
mechanistic models include the following:

e Use of conservation of mass to derive models of the operation of river-reservoir
systems;

e Use of conservation of mass, momentum, and energy with channel geometries and
bed elevations for hydraulic routing; and

e Use of principles of advection and dispersion for contaminant transport modeling.

10
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Mechanistic models of physical phenomena commonly consist of a set of fundamental
governing equations representing conservation of mass, energy, and momentum, reaction
kinetics, etc. Often, these are differential equations. These governing equations have initial
or boundary conditions, and can be solved by several numerical schemes.

Establishment of boundary conditions often requires a great deal of empirical knowledge,
often with detailed spatial and temporal resolution. Also, many components of the governing
equations are often empirical, such as use of Manning's equation for bed friction in hydraulic
models and Fickian diffusion to represent dispersion in fate and transport models. The
numerical solution techniques used to solve the large number of governing equations also
involve some simplification of the system, in terms of simplification of the system's
geometry and dynamics, which can induce some errors in model results. Thus, it is difficult
to have a purely mechanistic model.

Empirical Models

The equations and calibrations of empirically-based models rely more directly on field or
laboratory data, or empirical observations. Physical, chemical, biological, or socio-economic
theory are of less importance than the accumulation of observations and data.

Empirical models sometimes can "fit" current experiences well, but are thought to be less
reliable when the system is changed significantly, so that conditions change substantially
from the behavior for which the model was developed (Klemes 1982).

Mixed Models

Most models used in water resources and environmental problem solving are mixtures of
mechanistic and empirical models. The better-understood parts of the modeling problem
(such as conservation of mass) are commonly mechanistic, whereas less well-understood
processes, such as fluid friction are modeled based on empirical relationships (such as
Manning's n).

Conceptual models are a common compromise between causally based and empirical
models. Conceptual models often begin as a rough, relatively qualitative representation of
how components of a model interact, based on theoretical, empirical, or hypothetical
relationships. These "models" then can develop into quasi-mechanistic, quasi-empirical
models. The Stanford Watershed Model of the 1970s is a fairly successful example of such a
conceptual model.

Probabilistic Models
Analytical vs. Monte Carlo modeling (Under Development)
Adaptive Management and Computer Models

Much has been written about the role of computer models for improving the basis for
management, even where little is known about the system being managed (Holling 1978). In

11
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these cases, computer models often are seen as a rigorous tool for systematically identifying
what is known and what is not, estimating the importance of things imperfectly known, and
providing an explicit technical basis for beginning to manage critical systems before they are
completely understood. ... Models are both a distillate of past experience and a stimulus to
the future development of experience (Beck 1985).

To improve, substantiate, and communicate the knowledge-based representation of a system
in a model, model development usually proceeds along a series of commonly accepted steps.

Model Development Process

Considerable consensus exists in the profession and academia that the development of
computer models should follow a somewhat standard procedure, which is outlined below and
summarized in Table 1. This process is designed to aid the user of the model and the users of
model results by providing assurances that the model works and identifying the limits of the
model's capabilities. Additional discussion of this process can be found elsewhere (ASTM
1992, 1995a,b; Beck 1983a, 1985; Gass and Thompson 1980; James 1993; Jacoby and
Kowalik 1980; Sargent 1988).

Table 1: Major Steps in Model Development

Step Name Purpose
1. Probvlem Identification Solving the right problem
2.  Define Modeling Objectives Define use for model and standard of success
3.  Formulation of Model Mathematical similarity to the problem system
4.  Selection and study of Numerical similarity to the mathematical
numerical solution formulation of the problem
5. Model Calibration Set constants to represent system behavior and
characteristics
6. Model Verification Test model based on model behavior
7.  Model Validation Test model by comparison with field data

8.  Documentation of Model Make model understandable to users

9.  Update and Support of Model =~ Maintain and improve the model's usefulness

Although there is a fair consensus on the general contents of good model development, this
procedure is not standardized to the degree found in many other technical fields, such as
chemical analysis. Perhaps this lack of detailed standards reflects the difficulty and diversity
of modeling problems. It also should be noted that the procedures discussed here are often
iterative in nature. For example, failure of a model to calibrate well often leads to re-

12
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examination of the model's formulation. Also, detailed and prolonged work in model testing
can identify new modeling objectives. As can be seen for most models commonly used in
practical problem-solving, model development is rarely a completed process, but rather one
of continual improvement, adaptation, and updating.

Step 1. Problem Identification

It is impossible to model everything. The first and arguably the most important step in
modeling is to identify the problem to be modeled, and by implication identifying the
problems (or parts of the problem) that are not to be addressed. Considerable attention
should be given to the roles the model is expected to serve in addressing the problem, both in
the short and long terms. Who will be using the model, and how is the model expected to
help?

Step 2. Define Modeling Objectives

Most computer modeling efforts can address only a few important aspects of a general
problem. Thus, it is important early on to identify specific modeling objectives. These
objectives help the model development process by doing the following:

e Allowing the developers to focus on particular aspects of the problem and
uses of the model;

e Providing a set of criteria for evaluating the performance of the model (i.e.,
how well does the model's application satisfy the stated objectives?); and

e Providing clear indications of intended model uses for potential users of the
model and model results.

Few modeling decisions exist that should not be made without consideration of the objectives
of the model and its problem context. Thus, the modeling objectives should also reflect some
clear understandings of how the model is expected to be integrated into larger decision-
making, scientific, or engineering problem-solving contexts.

Step 3. Formulation of a Model

Model formulation is the simplification of an understanding of the real problem to a
mathematical form in a way consistent with the modeling objectives. Formulation involves

the explicit specification of relationships thought to govern the behavior of the system (Beck
1983a).

Model formulation typically begins with development of a conceptual model, a working
understanding of how a system works. This conceptual model usually represents our
theoretical understanding of the system. This conceptual model forms the basis for the more
detailed and explicit development of a mathematical model, a system of equations, typically
implemented on a computer.

13
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In formulating a model, various decisions will need to be made, hopefully reflecting the
problem, modeling objectives, and our understanding of the problem. In addition to
formalizing the relationships that describe the system, the spatial and temporal aggregation
and scale of the system need to be specified. Is the model to be steady-state or dynamic?
Linear or non-linear? Deterministic or stochastic? If stochastic, which type of stochastic?

For example, for ecological modeling problems, the modeler needs to know which species of
classes of species will be represented and which environmental factors affecting them are to
be included? For hydrodynamic models, should 1, 2, or 3 dimensional representations of the
system be used, how coarse a spatial grid, and if the model is dynamic, what time-step should
be used? For water quality models, which constituents should be included, and how should
their sources, sinks, and reactions be represented?

The purist's decision in all these cases is to choose the more detailed solution (highly
disaggregated in time and space, dynamic, stochastic, etc.). However, this is usually the
wrong decision, or perhaps merely an impossible decision. Highly detailed formulations are
typically unsupported by field or laboratory data of sufficient quality or quantity and may
provide little predictive understanding for the problem at hand. Complex models also are not
always needed for the problem-solving objective. Instead, simplification commonly is
needed, attempting to represent the most important parts of the problem, consistent with data
and knowledge available within the context of the problem. For problem solving, we often
cannot wait for perfect knowledge of a system. Indeed, the formulation and testing of a
model (as an active hypothesis) usually can accelerate our understanding of a system. Asa
practical matter, there is need for a rough balance between the errors from simplification and

the errors introduced by having additional uncertain parameters, inputs, and boundary
conditions (Beck 1985).

As model development proceeds to model calibration, testing, and use, it is often necessary
to revisit decisions made in model formulation, at least in part. Model development is
usually an iterative process. This is healthy.

Step 4. Selection and study of numerical solution behavior.

Once the mathematical form of the model has been specified, the solution method for the
model equations must be found. Often, particularly for complex models, the solution method
for the model equations will require testing to ensure that the numerical solutions are correct
for the intended types of problems and modeling objectives. Sometimes, concerns over
numerical solution are reduced or eliminated through the use of commonly accepted software
capable of solving some common forms of mathematical equations. These commonly
accepted software can include spreadsheets, commercial equation solvers (e.g., MATLAB,
LINDO, MINOS, etc.), or commercial subroutines (e.g., IBM's IMSL routines).

Step 5. Model Calibration.

Model calibration is the process of establishing specific values for parameters (constants) in
the model's mathematical equations and algorithms. Typically, the purpose of calibration is
to "fit" the model to the system being modeled, trying to “match" model and real output. The
definition of a "good" fit or match between model and real output usually depends on the

14
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objectives and intended uses of the model. For example, for a rainfall-runoff model, if flood
periods are of greatest interest, the ability of the model to correctly predict low flows might

not be important.

Table 2 briefly describes several approaches to model calibration. Each method requires
successively greater amounts of data from the real system.

Table 2: Approaches to Model Calibration

Approach

Description

Classical Physical
Constants

Usually, there are physical constants, such as gravitational acceleration w
known constant values. These parameters are typically set to these know
values. :

Literature Values

Often specific studies have been conducted elsewhere or at other times to
estimate the value of parameters in specific model equations. These valu
are often useful for estimating reasonable parameter values for other mod
utilizing the same model equation in similar conditions. A variant of this
approach is to have an "expert" on a particular parameter give an educate
guess of what its value should be. This calibration approach is often used
where data collection is impossible or to see if parameter values given by
other approaches are "reasonable.”

Field Measurements

Some model parameters, such as watershed area, are relatively determinis
unchanging, and easily estimated. Field measurement or map measureme
of such parameters can often give reasonable estimates.

Statistical

Very frequently, a model parameter can be measured, but might not have
constant value. This can arise because there may be measurement error o
natural variation of the parameter over time or space. If a single paramet
value is to be used, statistical methods can be used to estimate the "best"
single value for the parameter. Through Monte Carlo modeling, it is
possible to use many parameter values for a single parameter, if needed.

By Manual Fit

One of the most common approaches to setting parameter values is to tak
one or more sets of input and output data from the real system and then

make many runs of the model, iteratively adjusting parameter values until
"good" fit is achieved. This implies-that the modeler has a firm idea of w
constitutes a good fit. Taken to extremes, calibrating a model by fit treats
the parameters as "fudge factors" to help make the model "fit" the real dat

Regression and
Automated Fit

Regression is a more mathematically based approach to setting parameter
values "by fit." In regression, varying parameter values optimizes an
objective function (defining good fit). Common linear regression is the
typical objective where the parameters of the model are optimized to find
set of parameter values with the minimum sum of squared error. Where
great amounts of input and output data are available for the real system, a
the model equations are amenable to optimization, regression methods ca
often yield statistics on the model's likely error and other quantitative
estimates of goodness of fit. More sophisticated optimal parameter

estimation techniques also are available (Beck 19893b).

15
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In reality, several of the above methods are usually used to set values for model parameters.
It is often something of an art.

From a different perspective, model calibration also is a form of model testing. If the model
cannot be made to reasonably simulate known field observations by direct and reasonable
modification of calibration parameters, then the model has in some way been tested and
found to be empirically inadequate. Importantly, much can be learned from such failures,
which are common in modeling. The ways that a model fails to "fit" a calibration data set
also can be instructive in re-formulating the model by helping to identify specific processes
or conditions that the model represents poorly (Beck 1985).

If a model can be adequately calibrated, additional testing, in the form of verification and
validation is desirable. However, if the number of adjustable model parameters is large
relative to the size of the calibration data set, then a "good fit" is often meaningless, since
many sets of parameter values would likely give reasonable agreement with the small
calibration data set. Large models with many adjustable parameters, typically require much
larger calibration data sets.

Step 6. Model Verification,

Model verification can consist of several techniques that provide some test of the adequacy
or reasonableness of the model for a particular purpose. Sometimes, model verification is
defined as assessing if the model "behaves in the way the model builder wanted it to behave"
(Beck 1983a; Gass 1983). Model verification and other model testing techniques are
summarized in Table 3. Several such tests are typically employed, with specific tests applied
to test particular model components in addition to testing overall model behavior.

Table 3. Methods for Model Testing (Verification and Validation)

Method Summary

1. Sign Test Do changes in model inputs lead to changes in model
outputs in the "right" direction? .

2. Ordinal Test Do sequential changes in input values lead to output
changes that are consistently in the "right" direction?

3. Sensitivity Analysis Do changes in input and parameter values lead to

"reasonable" changes in output values, both in magnitu
and direction of change? :

4. Turing Test Can an "expert" in the subject of the simulation
distinguish between the model's behavior and the
behavior of the real system? Is model behavior
"reasonable” to experts?

5. Comparison with Analytical A test for numerical behavior, where rigorous analytic
Solutions solutions exist for simple applications of the model, do
analytical and simulation results agree?

6. Reproducibility or Comparison with Do other studies and models find results similar to thos

Other Models found by the model in question? For selected model
components, do model results agree with hand
calculations?

16
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7. Statistical Analysis How much variation in the calibration data can be
explained by the model? What is the statistical
significance of the calibration of the model?

8. Independent Testing of Model Confidence in the whole model is improved by testing
Components individual model components.

9. Independent Calibration and Using separate data sets to calibrate and test the model,
Validation how well does the calibrated model estimate outputs fo

the test data set? If several test data sets are available,
what do these tests imply for the conditions that limit t
model's effectiveness?

10. Deductive Proof Can the model, or important parts of the model, be
: derived from fundamental information (e.g., conservati
of mass, momentum, energy, and geometry)? Is the lo
of the model correct and correctly implemented?

Many of the first four tests, particularly the Turing test, can be aided through some form of
data display to aid the user and experts in evaluating the "reasonableness" of a large quantity
of model results and the behavior of overall model results and the results of model
components. A particular approach for the first four tests is "degenerate testing" (Sargent
1988), where model inputs are skewed to attempt to create degenerate model behavior, either
for extreme cases under which actual system behavior is known (droughts drying reservoirs)
or induce numerical or other logical degeneracy in the model's computations (e.g., large
transients in dynamic models).

Sensitivity analysis is a common component in model development, used principally to test
the reasonableness of model behavior, a form of model verification and to assess if particular
components of the model need to be represented in more detail, or can be suitably
represented with less detail. In this second function, if a sensitivity analysis shows that
model outputs are insensitive to a particular parameter in a subprocess, then perhaps the
representation of this sub-process can be simplified reasonably. Thus, some sub-processes
within a system may be "parameterized," or represented by a single constant parameter.
Conversely, if a model cannot be made to "fit" reasonable observed data without making a
particular "parameter” vary in time or space, then perhaps a more detailed representation is
needed of the parameter represented by that process. It is common for model verification to
lead to improvements in model formulation.

Step 7. Model Validation.

The term "validation" is used variously in the computer modeling literature (Beck 1983a, b;
Gass 1983). Here, model validation is the testing of a calibrated model by comparing model
results with one or more sets of independent field or laboratory data. The intent is to provide
an independent field test of the model, preferably under a variety of field conditions (such as
wet and dry years). This is the highest scientific hypothesis testing form of model test. In
terms of strength and rigor, it is superseded only by deductive proof from first principles.

The comparison of model results and field data for model validation is often not a simple

exercise, but requires some consideration of which comparative statistics are appropriate for
the particular objectives of the model. Comparative statistics could include (ASTM 1993):
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comparative time-series of results (as tables or graphs) for specified locations, comparisons
of maximum results (such as flood peaks), comparisons of duration above a water quality
standard, or common statistical comparisons such as root mean squared error (RMSE),
average absolute value of error, various types of correlation statistics, or statistical tests of the
probability that model result distributions differ from the distribution of field data (which
themselves may contain measurement errors).

Model validation is almost always difficult, requiring a large amount of independent high
quality data. There are some problems for which model validation is prohibitively difficult,
impossible, or irrelevant. An example of where validation is irrelevant is a water use or
population long-term forecasting model. By the time enough future data is accumulated to
verify the model, the forecasting use of the model is likely to have become mute. Models of
complex processes, such as non-point source pollution or some complex operations problems
also are difficult to verify, due to the difficulty of collecting spatially disaggregated data on a
dynamic basis. Sediment transport models often are difficult to validate (as well as calibrate)
because field data often are as prone to error as model results, making it difficult to compare
model results and data (McAnally 1989). Often some sort of data validation is a desirable
prelude to model validation. Where it is impossible practically to validate model results, the
model may still have considerable use, although its detailed and quantitative results should
not be viewed with the same confidence as results which closely correspond to accurate field
data under a wide variety of conditions.

Where models are used for management, validation is always problematic, since the model is
intended to examine system behavior under circumstances for which validation data is
inherently unavailable, conditions which are significantly different from present conditions
(Gass 1983; Thomann 1987).

Gass (1983) presents a broader view of model validation, including evaluation of the "face
validity" of a model; is the model and its behavior reasonable to those with field experience
with the system? This is much like the Turing, sensitivity, sign, and ordinal tests discussed
in Table 3. In a sense, these are tests of the model's ability to simulate behavior seen in the
real world.

Step 8. Documentation of Model.

"The purpose of the model report is to communicate findings, to document the
procedure and assumptions inherent in the study, and to provide general information
for peer review. The report should be a complete document allowing reviewers and
decision-makers to formulate their own opinions as to the credibility of the model."
ASTM (1995a)

The three major forms of computer model documentation are as follows:
a) The computer interface with the user;

b) Comment statements in the source code; and
¢) A manual or text, often in the form of user's and reference manuals.
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In practice, documentation usually involves combinations of all these forms in varying
amounts.

Although documentation via the model's user interface seems attractive, almost all models
require more detailed documentation in the form of a separate simulation manual. The
simulation manual is almost always the ultimate and authoritative form of documentation.

Comment statements in the source code (or notes in spreadsheets) are useful, but usually are
only suitable for those who must dig into the model code and make changes. In essence,
comment statements are directed to model programmers rather than model users.

The major documentation effort is the creation of user's and reference manuals. This is the
text that most users will refer to when setting up to run a model, preparing data, and

interpreting results. These manuals should describe the following (ASTM 1992, 1995b; Gass

1984):

The particular objectives of the model and its range of applicability;
The types of data required and the computer capability needed;
The conceptual approach of the model;

The mathematical formulation used in the model, and the limitations of this
formulation;

The numerical solution algorithm, including the limitations of this solution method;

The calibration of the model and its performance in various verification and/or
validation tests; .

In addition, these manuals should include the following elements:

Instructions for the user on how to run the model;

Instructions for preparation of any required data files, including numerical size limits
in this version of the model;

A series of test cases that demonstrate the performance of the model;

An example that leads the user through all steps in executing the model; and

A set of references that allow the user to follow-up on particular aspects of the model.

Model documentation should be written clearly and precisely, with little use of jargon. The
objective is to aid the user of the model and aid users of model results in interpreting and
making use of model results. The model should not be a black box.
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Because models are seldom fixed for long periods, the writer should establish a system of
tracking version numbers. Whenever possible, the model should be structured at the
beginning so that future updates and developments are easily understood by existing users
and do not require re-entry of the input in a new format.

Step 9. Update and Support of Model.

The overall purpose of having an explicit process of model development is to increase the
likelihood and degree that a model will serve the purposes for modeling discussed in Chapter
2. Just as we are more certain of the serviceability of a bridge if it is constructed from a well-
analyzed and field-tested design and whose construction has been subject to inspection and
component testing, a model that is methodically developed and implemented is far more

likely to provide good service.
A ]
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Modeling Errors (Under Development)
Sources of Model Errors
Uncertainty errors in the appreciation of the system to be modeled

In solution attempts to problems associated with water management, one has to deal with
systems that include two major, and quite distinct, types of components: the natural ones
and the man-made ones. The latter ones are usually fairly well known because they were
designed with specific criteria (one knows e.g. the dimensions of a spillway and its rating
curve for discharge versus elevation or those of a concrete canal that conveys water from
one part of a state to the other). On the other hand nature does not tell us what Manning'
s roughness coefficient is for the innumerable heterogeneous segments of the rivers that
crisscrosses the plains or valleys of the system, specially under extreme conditions of
flood with overflowing banks, etc. Thus one must accept the fact that the system under
modeling will always be described in a less than perfect way as to its physical static or
dynamic characteristics. This introduces a fundamental error that cannot be circumvented
and will always be present. The question that must be addressed is nevertheless, how to
reach decisions in spite of the uncertainties associated with our comprehension of the
system?

Conceptual errors in the description of the system to be modeled

Having understood that reality is too complex to be modeled perfectly, one must develop
a schematic view of the system and its behavior. One needs to superimpose on reality
our view of it and, naturally, a highly simplified one at that. In this process of
conceptualization and simplification, an excellent understanding of the behavior of the
natural system is needed in order to separate what is important and essential from

what is secondary or tertiary. Conceptualization is required regarding both the static
description of the system and its dynamic characteristics. In the static characteristics
category one finds the geometrical and topographic description of say a watershed. How
long is the main river? Can we approximate it by a succession of highly straightened
segments with sharp turns at the junctions or must we subdivide the river into a very large
number of reaches to accommodate changes in width, slope, roughness, direction, etc?
Comes the hard question: how do we know the error committed by not carrying out the
greatest level of refinement in the description? How do we test the model conception
error resulting from a given level of coarseness in the description of such factors?

In the dynamic category one finds the description of the physical laws that govern the
processes. It is fair to say that usually we know these laws at the molecular, microscopic
or at the punctual scale in the continuum mechanics sense. At the molecular scale we
know Henry' s law; at the microscopic scale we know Fick's law; at the punctual scale (or
column scale, say cross-section of size 1 to 40 square centimeters, 20 cm deep, the Darcy
scale) we know Darcy' s law. In water management we are not interested in these scales.
We have to deal with thousands of square miles. To calculate infiltration in a basin as a
result of rainfall events shall we then subdivide the top soil layer into billions of 25 cm2
cross-section , 20 cm deep, soil columns because we know Darcy' s law at that scale?
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Hardly practical though some merchants (either peddling computers or watershed
models) would like us to believe so!

At this point the infiltration process has to be conceptualized. There are several ways to
proceed. A common way is to simply resort to analogy and schematically assimilate the
topsoil to a lumped "reservoir" (or a few such reservoirs) with a variety of spillways and
conduits. These spillways and conduits represent the transmission and retention
characteristics of the soil at the area scale of 1 to 100 square kilometers and for depths
from 1 to 10 meters. Another approach is to extend to a much larger scale say a
satisfactory column law of infiltration (for example Horton' s or Green and Ampt' s),
which depends on physically based parameters such as saturated hydraulic conductivity
of the soil, and use in the formulas effective values of the parameters. Finally a third
approach starts from the punctual laws and derives, more or less approximately, by
multiple integration in space, time, expectation and process sense, a law valid at the _
larger scale of a parcel (1 to 10 square meters), hillslope (10 to 1000 square meters) or
watershed (a few square kilometers). The problem with that approach is that to carry the
integration one must conceptualize the laws of chance that underlie the spatial
distribution of the soil parameters and the type and degree of connectivity between the
columns or parcels that make up the hillslope or the watershed. We shall not here discuss
the pros and cons of these distinct approaches; we want only to point out that all may
potentially introduce serious model errors by failing to represent adequately the processes
involved at the practical decision scale. Finally it is quite conceivable that some
conceptual models commit the "sin of omission”, i.e. do not account for a significant
primary phenomenon. For example when studying infiltration into a layered soil, one
must account for

the fact that some layers may be unsaturated and transmit by far less water than if they
were assumed to be saturated. In this case the influence of capillarity was omitted.

Model equation errors

Starting from an analysis of the system and a conceptualization of its static and dynamic
characteristics, one proceeds to express that knowledge in mathematical symbolism,
leading to a system of equations and logical statements. The equations can be written in
differential, integral and/or algebraic forms. Naturally if the conceptualization was
severely in error or omitted significant processes, the mathematical formalism will not
correct the analysis. Thus we shall here only discuss the additional errors that might be
introduced at this level. If the form of the equations was differential in nature, again they
only apply at the punctual scale. They have to be integrated. If it is done analytically
then no error is introduced save for the possible wrong choice of boundary conditions!
For example treating a river in hydraulic connection with an alluvial aquifer as a constant
head boundary amounts to providing an inexhaustible source of recharge for the aquifer.
This is acceptable if the river is the Mississippi but not the South Platte in Colorado.

Parameter estimation errors

In rare occasions the physical parameters appearing in the equations can be directly
measured. For example there is no major problem in measuring the width of a river.
However in almost all situations the parameters have to be estimated indirectly through a
calibration procedure. The difficulty is that the estimation is always circumstantial and
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conditional. Pumping test procedures do not lead directly to transmissivity. From the
measured drawdowns and the pumping rates in the pumped well one infers through an "
inference model" (typically an analytical solution), which is based on a lot of
assumptions) what the value of a uniform transmissivity would have to be so that the
observations and the calculations by the inference model match in some "best" sense.
Errors enter in the model because the assumptions of the inference model may be
unreasonable for the given aquifer or because the selected criterion for the best match is
not appropriate or because the match is fortuitous and only applicable under the
conditions of the pumping test. Such estimations are usually conditional and
circumstantial. For example the estimated parameters of an infiltration model may give a
good match in the prediction of runoff given rainfall because all the events used for
calibration displayed a single clearly marked peak but would be totally inapplicable if the
event displayed several peaks. How does one quantify the error induced by parameters
estimated for a certain type of conditions when one wishes to simulate different
conditions? Typically the reason why models are built is precisely because one is not
satisfied with current management. Thus future operations will often lead to events
drawn from a different population than the one used in the calibration.

Input and data errors

Precipitation is measured at only a few points in space and what is needed is a continuous
description of it. This is again something one has to live with as measurements, even if
done without errors, will never cover the entire domain under investigation. Some time
the temporal distribution of rainfall will have a significant one. In groundwater the

- Theiss solution is a favorite benchmark. However when the comparisons are made time
steps and grid spacing are extremely small and the test results look good but in practice
the time steps and grid sizes used are orders of magnitude larger than the ones used in
these tests. What is the real truncation error for these large time and grid increments?

Confounding of errors

The most frustrating problem in trying to assess the magnitude of one sort of errors
versus another kind is that they end up being confounded. For example if a finite
difference model with coarse space and time increments is used to calibrate
transmissivities based on observations, the parameters are conditional on the spacing.

The same groundwater model used with a very fine grid (ignoring for now the problem of
interpolation) may end up giving bad predictions because a wrong model with the wrong
type of parameters when calibrated on good data will perform reasonably well, but it
cannot be used reliably under different conditions than those for the calibration.

Interpretation errors

It is very easy specially when using automatic calibration procedures to come to a decent
match but for the wrong reasons. Different models describing different mechanisms may
lead to similar decent matches with proper adjustment of their parameters. However it is
possible that with the calibration events the trigger for a completely different path in the
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computational sequence may never have been pulled because the necessary threshold is
never reached. Thus a good understanding of the detailed workings of a model is needed
for the interpretation of the results.

Sources of Modeling Errors

We use the term "modeling" to refer to the action of using a model for the purpose of
conducting studies of water management.

"Wrong choice of model" error

The first task for a water manager is to choose a model that is appropriate for the purpose
of the investigation to be performed. A wise user should be somewhat leery of using a
model for rainfall-runoff that was developed in England and tested only there, for
applications in Saudi Arabia. Either the basis for the model is thoroughly scrutinized and
deemed applicable or a priori another model is selected. Naturally to scrutinize the
model requires that a thorough documentation for the model be available. A poorly
documented model should not be used even if it claims it can do the job, or you may
suffer from a "trusting" error.

Wrong choice of increment error
This has been discussed in sections 1.4 and 1.6.
Wrong calibration and verification procedures

At some stage in the study process it will be necessary to calibrate a lot of parameters.
First one must understand clearly the structure of the model to proceed with calibration.
Let us say one has 20 years of daily data of rainfall and runoff for a catchment. Some
parameters affect mass balance, some affects the medium term dynamics and some the
short term dynamics. There will be evapotranspiration parameters, aquifer parameters,
soil parameters and river parameters to calibrate. One should not attempt to calibrate all
these parameters jointly on the 20 years of daily runoff. Rainfall and evapotranspiration
will affect the long-term mass balance for runoff. Except for obvious transcription errors
on rainfall these data will be taken at face value. Thus to establish a 20 years mass
balance for the system one needs to adjust the coefficients involved in the calculation of
evapotranspiration. If data of potential evapotranspiration were available derived from
pan evaporation, typically a coefficient is adjusted to account for the variation between
theoretical potential evaporation and the actual potential evaporation for the various
watersheds in the basin. This coefficient is adjusted to guaranty a perfect mass balance
for the 20 years of record, i.e. cumulative volume of runoff as calculated is the same as
the observed one. The time scale for that calibration is 20 years. Next one can look at
dry weather seasons. During these periods, over several months usually, runoff is driven
by the parameters that condition aquifer recharge. One thus calibrates the recharge
parameters on the characteristic shape of the recession curves of runoff. The time scale
for calibration is now one or a few months. Next one looks at volumes of flood events
for well characterized "single rainfall - single discharge peak events"
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to calibrate the parameters that control infiltration and thus excess rainfall and runoff.

The time scale now is several days to a couple of weeks. Next one looks at the volumes
under, and to a lesser degree the shape of, the discharge hydrographs under conditions of
"double rainfall - double discharge peak events" with 1/2 day to couple of days separation
between the rainfall events in order to calibrate the parameters that affect redistribution of
moisture in the soil top two layers. The time scale is now a couple of days. Finally one
looks at daily values during the flood events to estimate the parameters that control
propagation and attenuation in the flood hydrographs. By now all parameters have been
calibrated but unfortunately there is some dependence between the parameters so that the
calibration steps must be repeated again from the large time scale down to the smallest
scale at which the runoff data are known. This discussion illustrates that it is not possible
to calibrate intelligently and reliably a model without both a good understanding of the
phenomena and of the specific model structure to represent them. An error in modeling,
which is not easily quantifiable, is the "lack-of-knowledge-induced" error. Now one
would not use all the data to calibrate the parameters. One would select some of the
years for calibration and some for verification. It is wise to select for calibration the
years that did not exhibit extreme behaviors. The purpose of modeling studies is often to
extrapolate to situations that have not been encountered through the historical record.
Thus this partition in the record will demonstrate or not the ability of the model to
extrapolate and will provide a quantification of the errors that are likely to be encountered
for the more extreme situations. Naturally for actual use of the model in the future one
now recalibrates the model with all the years of record, but one has a conservative basis
for estimation of errors for the future.

Delimiting Significance of Errors (sensitivity analysis)

One needs to quantify the intrinsic model errors, i.e. the typical errors say in predicting
runoff (if the model' s basic function is to predict runoff) as a function of
seasons(dormant versus growing season) or flow conditions (e.g. during floods or
recessions). One needs to study the impact of an error in estimation of certain parameters
on certain quantities of interest such as instantaneous discharges or seasonal cumulative
values. Is it important to know the exact value of transmissivity in the aquifer to predict
peak discharge during a flood? In that case the answer would be no (practically) all the
time and one could dispense with the exercise! Next is to study the impact of an error in
certain parameters on a management decision. It is quite conceivable that a model that is
not very accurate in predicting hydrograph shapes during flood events could be perfectly
acceptable to size a new reservoir with interannual capacity. Whereas the intrinsic error
can be secured once and for all by running the model, the "derived" errors for a particular
study will depend on the objective of the study and an investigation is required for each
individual study.

Characteristics of Useful Models

A model is useful, despite being wrong, when its quantified intrinsic error is compatible
with the acceptable accuracy of a management decision made on the basis of use of the
model. For example if a relatively large error in prediction of runoff during dry weather
seasons leads nevertheless to a relatively narrow distribution in the needed size of a low
flow augmentation dam, then it is useful. If the reverse holds the model in its present
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form is not useful. The intrinsic error must be reduced by a better calibration or by a
change in structure or a combination. Even if the intrinsic error results in unacceptable
level of error for the management decisions deduced from the use of the model, the

model may have utility in a relative sense if one wishes to compare the effectiveness of
different strategies. However one must be sure that the model incorporates properly the
factors that condition the different responses between strategies. For example, if one is
concerned about the effect of a pumping well near a river on a downstream surface water
right holder, one must be sure that the groundwater model does not treat the river as a
constant head boundary. In addition, it is important that the model account for the
dynamic flow propagation and for the associated fluctuating river stage.

Model Validation Types Development (Under Development)

Evaluation of Mathematical Models

This section provides procedures and criteria for development, modification, and use of
mathematical models. It does not specify models themselves, but it establishes minimum
criteria for distinguishing acceptable models from those that may be incomplete, untested, or
inappropriate for intended uses. This section permits the orderly evaluation of models for
their completeness and suitability in specified uses. (ASTM, 1992).

Numerous pressures have led to the us of models in varying stages of completion,
documentation, public availability, testing, and evaluation. Often models are used without
any foreknowledge of the confidence that can be placed in their predictive capabilities.
Models are sometimes used in ways that violate the assumptions and boundary conditions
that are built into them. Such deficiencies and differences in models have led to unnecessary
conflicts among users (ASTM, 1992).

Model Validation

Validation is the process of comparing model results to historical data. A model cannot
completely duplicate historical data under all conditions for two reasons: (1) models are just
mathematical representation of reality and (2) historical data contains problems with
accuracy, precision, and completeness. Thus, validity is a matter of degree: it depends on the
information available and is subject to the requirements established by the decision-maker.
Despite this necessary level of subjectivity, models should not be used for assessments
without examination of their validity (ASTM, 1992).

Modelers often state that their model "validates or verifies reasonably well" and then they
point to a few stations and parameters that show "good" fit with historic data. However, to
the decision-maker, which is usually the end model user, this general information is not
usually very useful. To overcome this deficiency, the Forum has suggested a qualitative (and
possibly quantitation) rating of the agreement between model predictions and historical data.
What constitutes each level of validity should be clearly defined so that the reviewer can
make an informed assessment. The table below outlines validation criteria that may be used
by model users as a standard yardstick to evaluate models and their appropriate uses (that is,
prevent use outside the limits of the assumptions used to formulate the model).
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Table 4

Validation Type Criteria

Validation

Type Description Criteria

I Excellent To be determined
II Good «

11 Fair “

IAY% Poor “

v Unacceptable «

Public Access to Models

Computer models should be readily available to all users for independent evaluation prior to
formal use as a decision-making tool. All model developers should archive an electronic
copy of model in a manner that is accessible via the Internet. The Forum webpage will be
enhanced to provide links to each organization’s model webpage, if available. If necessary,
the Forum will provide server space for storage of these models. Each log should include
the model developer’s name, the (executable and/or source) code, user’s and reference
manuals.
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5. Use of Modeling in Planning Studies

Formulation and Evaluation of Alternatives Plans

An alternative plan consists of a system of structural and/or nonstructural measures,
strategies, or programs formulated to alleviate specific problems associated with water-
related resources in a particular planning area. Alternative plans should be formulated in a
systematic manner to insure that all reasonable alternatives are evaluated. Probably the most
common pitfall in planning is the failure to consider all alternatives, especially simple, yet
non-traditional, alternatives. This occurs because the time constraints imposed on the project
or apprehension of being ridiculed by management or peers.

The impact of the alternative plan is the difference between with-plan and without-plan
conditions for each category of effects. Evaluation of alternative plans should be based on
the most likely conditions expected to exist with and without the plan. The without-plan
condition is the condition expected to prevail if no action is taken. The with-plan condition
is the condition expected to prevail with a particular plan assumed to be in effect. The
forecasts of with- and without-plan conditions should use “existing conditions™ as the
baseline.

Environmental impact analysis is an integral part of planning. The intent of California’s
CEQA and the federal NEPA process is to make Environmental Impact Reports (EIR) and/or
Environmental Impact Statements (EIS) a decision-aiding document rather than the primary
decision-making report. The environmental document should be integrated within the
broader plan formulation/evaluation steps of the typical project planning process (Stakhiv,
1989)

An EIR is a detailed informational document that analyzes a project’s significant effects and
identifies mitigation measure and reasonable alternatives (CEQA Guidelines Secs. 15121(a),
15362). An EIR must describe the existing environmental setting from local and regional
perspectives. When a proposed project is compared to an adopted plan, the analysis must
examine existing physical conditions (CEQA Guidelines Sec. 15125). The EIR must always
analyze the no-project alternative. The no-project alternative must describe maintenance of
existing environmental conditions as a baseline for comparing the impacts of the alternatives
(Dusek v. Redevelopment Agency (1986) 173 Cal.App.3d 1029) . For general plan
amendments, however, it may be appropriate to analyze two no-project scenarios:
maintenance of existing environmental conditions and future buildout under the existing
general plan. These two approaches were used in the development of the draft State Water
Resources Control Board (SWRCB) Decision 1630 (SWRCB, 1992). Draft Decision 1630
used the average annual historical export rate from 1984 through 1989 to represent existing
conditions for all beneficial uses of Bay-Delta waters and estimated future demand for water
supply planning purposes.

Decision 1630 stated:

“ Current estimated demand does not accurately predict the export rate
that represents existing physical conditions, because (1) the estuarine
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ecosystem has never experienced the hydrological conditions that would
exist if the current estimated demand were satisfied ... (SWRCB, 1992).”
“While exports will be less than would be expected in the future under
(SWRCB) D-1485, the proper base for comparison to determine
environmental effects is actual current conditions. (SWRCB, 1992)”

The 1984 through 1989 period is the most recent period before the 1989-1992 drought
reduced exports and includes the largest export to date. The SWRCB concluded that the

historical rate is recent enough to approximate existing physical conditions.

Similar issues have arose in developing the “environmental baseline” for the CVPIA use of
the 800,000 acre-feet of “B2” water and recent SWRCB Bay-Delta Plans.

Documentation of Study Assumption

Planning studies should be documented in a clear, concise manner that explains the basic
assumptions and decisions that were made and the reasons for them. An inventory should be
made to determine the physical, chemical, and biological resource conditions. This inventory
should describe the existing conditions and should be the baseline for forecasting with- and
without-plan conditions.

Documentation of Modeling Study Results

Due to the importance of modeling to stakeholders and decision-makers, model studies (and
development) need to be documented and archived to ensure quality assurance. The
American Society for Testing and Materials (ASTM) has developed a framework for
documenting and archiving a groundwater flow model application that can be tailored for
Forum use (ASTM, 1995b).

Model documentation includes written and graphical presentations of model assumptions and
objectives, the conceptual model, code description, model construction, model calibration,
predictive simulations, and conclusions. Model archival refers to a file or set of files that
contains logs of the calibration, sensitivity and predictive simulations, supplemental
calculations, model documentation, a copy of the model source code(s) or executable files(s)
used, or both, and input and output data sets for significant model simulations.

A model archive should consist of sufficient information generated during the modeling
effort that a third party could adequately perform a post-modeling audit and such that future
reuse of the model is possible. Table 1, which is reproduced electronically on the Forum
webpage, shows the recommended simulation log that should be used to archive each
significant model simulation. All model users should archive an electronic copy of the
simulation log, including the (executable and/or source) code in a manner that is accessible
via the Internet. The Forum webpage will be enhanced to provide links to each
organization’s simulation log webpage, if available. If not, the Forum will provide server
space for these logs. Each log should include the modeler’s name, simulation date, project
name/number, simulation number, the code used (and version), the purpose of the run, the
input file names, comments on the input data, the output file names, and comments on the
results.
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Table 5
MODEL SIMULATION LOG

By: Date:

E-mail: Phone: ()

Project Title and No.:

Simulation Title and No.:

Code Used/Version No.:

Purpose of Simulation:

Names of Input Files:

Comments on Input Data:

Names of Output Files:

Comments on Results:

General Comments:
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7. Conclusions (Under Development)
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Appendices
I. Glossary (Under Development)

IL Technical and Management Modeling Questions that Stakeholder and
Decision-makers Should Ask?

By Josh Collins (SFEI) 12/4/97

I think the "protocols" that you are attempting to construct could be very worthwhile. For
some time I have been suggesting that the modeling community should begin to hélp
bridge the information or knowledge gap that exists (and is growing) between the
modelers and the resource managers who in many cases fund and must interpret models.
In this regard I would like to suggest that you consider including perhaps as an appendix
a series of technical and management questions that a resource managers ought to be able
to ask about a model to gain a basic understanding of its applicability. Illustrative
answers might also be provided, perhaps as a little dialog. For example, a Resource
Manager might be advised to ask:

What are the boundary conditions for the model?

What are the assumptions of the model?

How do they relate to each other and to the uncertainties of the output?

What are the uncertainties or statistical confidences in the output and how could

those be narrowed?

e What is the history of development of the model, and where else has it or a
similar approach been used?

e Etc. '

I doubt any terribly technical or mathematical answers would be appreciated, but rather
some translation of that into basic understanding of where the model comes from, what
are the assumptions, what are the inputs and outputs, and what are the uncertainties of
those. I expect you can draw upon your wealth of experience to fashion such a QA,
perhaps with a little help from associates in science and/or management.

I am forwarding this email to the hydrogeomorphic advisory team (HAT) of the Bay Area
Wetlands Goals Project because the HAT has expressed some interest in this topic. I can't
say whether or not they agree with me, but I think they might be able to help with your
efforts.
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